
Accurate and Reproducible Linear Algebra

Operations for Many-core Architectures∗

Daichi Mukunoki1, Takeshi Ogita2, Katsuhisa Ozaki3

RIKEN Center for Computational Science1, Tokyo Woman’s Christian University2,
Shibaura Institute of Technology3

1. Introduction

This poster presents our accurate and reproducible implementations of linear algebra kernels
for many-core architectures. In this study, “reproducible” means an ability to obtain a bit-level
identical result every time on the same input data regardless of the computation environment,
and “accurate” means that the accuracy of a computation result is higher than that of the
standard floating-point operations. As floating-point computations suffer from rounding errors,
the result may be inaccurate. Moreover, the result may be different in each computation (i.e.,
non-reproducible) depending on many factors such as the implementation of the library, the
number of threads, use/non-use of atomicAdd and FMA, etc. on parallel computations. Loss
of accuracy and reproducibility may become a crucial issue on the debugging of complex codes
as well as the reliability of computations. Therefore, as the first step towards accurate and
reproducible numerical computations, several projects have been started to develop accurate and
reproducible Basic Linear Algebra Subprograms (BLAS) (e.g., ReproBLAS [1] and ExBLAS [2]).

2. Method

To achieve accurate and reproducible results, we utilized the Ozaki scheme, which is an
accurate matrix-multiplication method proposed by Ozaki et al [3]. The method consists of
the error-free transformation for matrix-multiplication and an accurate summation method. In
this method, a matrix-multiplication is transformed into the summation of multiple error-free
matrix-multiplications by splitting the input matrices into several split matrices. The method
can achieve not only correct-rounding but also a certain accuracy on demand by changing
the number of split matrices used in the computation. The accuracy also depends on the
absolute range of the floating-point values in the input matrices. Besides, if the summation is
computed by some reproducible method, the accurate matrix-multiplication result also achieves
reproducibility. In this study, we used the NearSum, a summation algorithm which can achieve
correct-rounding, by Rump et al. [4]. The method is applicable for any inner-product based
operations such as DOT, GEMV, and sparse matrix-vector multiplication (SpMV). The notable
point of this method is that the matrix-multiplications for the split matrices can be computed
using standard floating-point operations, i.e., those operations can be computed with DGEMM
for double-precision matrices, and it does not matter whether the DGEMM is reproducible or
not. Therefore, we can utilize highly optimized BLAS implementations such as Intel MKL and
NVIDIA cuBLAS for accurate and reproducible computation. This is a great advantage from
the viewpoint of the development cost.

3. Demonstration

We implemented three BLAS routines, DOT (r = xT y), GEMV (y = Ax), and GEMM
(C = AB), with the Ozaki scheme on x86 CPUs and NVIDIA GPUs. Our implementation with
the Ozaki scheme, OzBLAS, computes and returns double-precision floating-point values: the

∗This research was partially supported by MEXT as “Exploratory Issue on Post-K computer” (Development
of verified numerical computations and super high-performance computing environment for extreme researches)
and the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 19K20286.

Суперкомпьютерные дни в России 2019 // Russian Supercomputing Days 2019 // RussianSCDays.org

202



Table 1: Maximum relative error compared to MPFR (2048-bit) on DOT (n = 10000). All the
results including the result by MPFR are rounded to double-precision.

Input range 7.6E-06 2.0E-08 2.1E-14 1.2E-17
(min – max) – 2.4E+01 – 2.6E+06 – 2.7E+11 – 6.2E+14

cuBLAS (double) 1.85E-16 1.21E-16 2.47E-16 2.03E-16
OzBLAS (d=3) 0 3.10E-13 1.59E-10 1.55E-08
OzBLAS (d=4) 0 0 1.60E-15 3.91E-14
OzBLAS (d=5) 0 0 0 0

Table 2: The results of DOT (n = 10000, input range: 7.6E-06 – 2.4E+01) with various imple-
mentations shown in hexadecimal format. The MPFR result is rounded to double-precision.

Implementation CPU (Xeon E5-2623 v4) GPU (Titan V)

MPFR (2048-bit) 0x1.33b6d7b84f15cp+7 N/A

cuBLAS (double) N/A 0x1.33b6d7b84f15bp+7

MKL (double) 0x1.33b6d7b84f15ep+7 N/A

OzBLAS (d=1) 0x1.33b4bbaep+7 0x1.33b4bbaep+7

OzBLAS (d=2) 0x1.33b6d7b83efffp+7 0x1.33b6d7b83efffp+7

OzBLAS (d=3) 0x1.33b6d7b84f15cp+7 0x1.33b6d7b84f15cp+7

interface is compatible with the standard double-precision BLAS. For the computation of split
vectors/matrices, they use Intel MKL and NVIDIA cuBLAS internally on CPUs and GPUs,
respectively. Table 1 demonstrates the accuracy of the Ozaki scheme. ‘d’ corresponds the
number of split vectors/matrices used in the computation. The accuracy depends on the range
of the absolute values in the input value as well as d. Therefore, it can be less accurate than the
standard double-precision DOT routine. Table 2 demonstrates the reproducibility and accuracy
of the Ozaki scheme on DOT on CPU and GPU. The OzBLAS may be less accurate than
Intel MKL and NVIDIA cuBLAS depending on d but always ensures reproducibility between
CPU and GPU. The theoretical execution time overhead compared to the standard double-
precision is 4d times on memory-bound operations such as DOT and GEMV. On compute-bound
operations such as GEMM, while it is d2 times, it can be reduced to d(d+1)/2 times with a small
accuracy loss. Our GPU implementation on CUDA achieves a comparable performance with
the theoretical overhead. In our poster presentation, we will present the performance evaluation
results on both CPUs and GPUs including the comparison with existing implementations as
well as the details of the implementations and performance optimizations.

References

1. Ahrens P., Nguyen H.D., Demmel J.: ReproBLAS – Reproducible Basic Linear Algebra
Sub-programs, https://bebop.cs.berkeley.edu/reproblas.

2. Iakymchuk R., Collange S., Defour D., Graillat S.: ExBLAS – Exact BLAS,
https://exblas.lip6.fr.

3. Ozaki K., Ogita T., Oishi S., Rump S. M.: Error-free transformations of matrix
multiplication by using fast routines of matrix multiplication and its applications, Numer.
Algorithms, vol. 59, no. 1, pp. 95–118, 2012.

4. Rump S., Ogita T., Oishi S.: Accurate Floating-Point Summation Part II: Sign, K-Fold
Faithful and Rounding to Nearest, SIAM Journal on Scientific Computing, Vol. 31, No. 2,
pp. 1269–1302, 2009.

Суперкомпьютерные дни в России 2019 // Russian Supercomputing Days 2019 // RussianSCDays.org

203


