

Start-up and the results of the volunteer computing project RakeSearch

Maxim Manzyuk¹, <u>Natalia Nikitina²</u>, Eduard Vatutin³

¹Internet portal BOINC.RU, Moscow ²Institute of Applied Mathematical Research, Karelian Research Center of the RAS, Petrozavodsk ³Southwest State University, Kursk

1. Desktop Grid and BOINC

1. Desktop Grid and BOINC

Key events in the history of Desktop Grid

2. Research groups and joint work

Karelian Research Center of the RAS, Petrozavodsk (E. Ivashko, N. Nikitina, I. Chernov, A. Rumyantsev et al.)

- Mathematical modeling of Desktop Grid
- Development of task scheduling models
- Development of task replication models
- Statistical modeling of computational systems
- Scientific computations basing on Desktop Grid

Southwest State University, Kursk (E. Vatutin et al.)

Software development for solving scientific
 & practical problems basing on DG technologies

- Teaching on the parallel programming
- Work on the BOINC project Gerasim@home aimed at solving discrete combinatorial optimization problems
- Research of orthogonal diagonal Latin squares

Web portal BOINC.RU

(M. Manzyuk, AlexA, SerVal, citerra et al.)

- Software development for solving scientific & practical problems basing on DG technologies
- Communication with the volunteer community
- Coordination of a volunteer computing team
 - Popularization of volunteer computing
- Research of orthogonal diagonal Latin squares

2. Research groups and joint work

Volunteer computing project RakeSearch aimed at exploring the space of ODLSs of rank 9

- A Latin square is a table of size nxn, filled with n elements of set M in such way that each row and each column of the table contain every single element of M exactly once
- A diagonal Latin square is a Latin square which has unique elements both on its main and secondary diagonals
- Two Latin squares $L(I_{ij})$ and $K(k_{ij})$ are called mutually orthogonal (MODLSs) if all ordered pairs (I_{ij}, k_{ij}) are different
- RakeSearch algorithm finds row-permutational pairs of MODLSs
- The algorithm picks up separate pairs of mutually orthogonal DLSs, which allows to reconstruct full graphs of their orthogonality
- The resulting graphs represent the structure of the explored space

The developed RakeSearch algorithm for finding MODLSs:

Input: a unique "mask" of the primary filling of a square; a path of filling the square cells; auxilary structures.

- Generation of another DLS;
- Row permutations of the generated DLS checking if it is orthogonal to the initial one.

Output: either found ODLSs for the initial one, or a message that they were not found. The application is implemented in C++ using API BOINC

The resulting rate is 44-92 thousand DLSs per second

Example of a pair of row-permutational ODLSs

https://rake.boincfast.ru/rakesearch/

- The project is implemented basing on BOINC within the Grid segment of the Center for collective use "Center for high-performance data processing" of Karelian Research Center of the RAS
- The project started in August 2017
- The majority of computational nodes belongs to volunteers from different cities and countries (due to advertising in the community)
- Own resources are employed as well:
 - 2 nodes of the computational cluster of Karelian Research Center
 - 6 desktop computers of the authors of the project
 - 3 nodes of the computational cluster of BOINC team Crystal Dream

BOINC project settings:

- The application is implemented for work in BOINC environment; a mechanism of BOINC checkpointing on the client is employed
- Results are bitwise validated, the quorum is 2, the deadline is 1 week
- An average runtime of a workunit is 5 hours for the default application and 30 minutes for the optimized application
- The application is implemented for Windows and Linux 64&32-bit, ARM
- Design of the search process allows to reward findings with badges

The project web forum is supported (~10% active participants) as well as communication with the participants community:

- Publication of project goals and current results
- Optimization of the open source code and program debugging
- Rewarding the participants and teams
- The results are published in the form of ODLSs and graphs
- The project participated in competitions among BOINC teams
- Applications for gathering work statistics are implemented
- Backups and archiving the BOINC server and database are automated

The project results (by June 2019):

- Peak daily capacity of 1788 computers by 385 participants
- Peak daily performance of 256 TeraFLOPS
- Average daily capacity of 434 computers by 153 participants
 Average daily performance of 51 TeraFLOPS
- 23 million workunits completed in 22 months
- 160 thousand of ODLSs pairs were found
- 175 unique types of orthogonality graphs were discovered
- A correspondence between numbers of DLSs and ODLS pairs that can be generated for a fixed main diagonal was found

3. RakeSearch project: discovered graphs (6/175)

Russian Supercomputing Days, 23-24 September 2019, Moscow

13/18

4. Statistics gathered in RakeSearch project

Runtime history for tasks and hosts, 22 months of computing:

- Estimation of completion time of a batch of tasks
- Comparison of CPUs by task replicas runtime
- Imitation modeling of a Desktop Grid to evaluate task scheduling and replication algorithms basing on empirical distributions
- Full lifecycle history of a computational experiment in BOINC project

4. Statistics gathered in RakeSearch project

The number of active computers

4. Statistics gathered in RakeSearch project

Daily CPU time

Russian Supercomputing Days, 23-24 September 2019, Moscow

16/18

5. Current & Future work

- Search for row-permutational pairs of MODLSs of order 10 in collaboration with the team studying ODLSs of order 10
- Simulation experiments of mathematical models for task scheduling in Desktop Grid using project statistics data
- New mathematical models of Desktop Grid-like systems and the participants behavior basing on the gained experience

Thank you for your attention!

E-mail: nikitina@krc.karelia.ru