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Motivation

Large-scale graph processing problems are extremely relevant to study nowadays, since 
graph-analytics has numerous real-world applications 

In modern supercomputing a variety of different platforms, architectures, and configurations 
are used on hardware side 

It is important to study which platforms are capable of more efficient graph-processing, and 
which programming techniques it is necessary to use in order to maximise execution 
efficiency 

Current work is devoted to the investigation of vector processing possibilities for large-scale 
graph problems on NEC SX-Aurora TSUBASA architecture 

Implementing graph algorithms for vector architectures is typically challenging, because of 
irregularity in graph data-structure and memory access patterns 

No implementations of graph algorithms for SX-Aurora TSUBASA exist yet (!)
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NEC SX-Aurora TSUBASA Architecture Details
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NEC SX-Aurora TSUBASA is a dedicated vector processor of the NEC SX- architecture family 

Unlike the previous SX- computers, the SX-Aurora TSUBASA is provided as a PCIe card, and the whole 
system consists of vector engines (VEs), equipped with a vector processor and a vector host (VH) of an x86 
node.  

VE includes 8 vector cores, 4.3 TFlop/s performance (SP) 

6 HBM modules, 1.22 TB/s bandwidth
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Each vector core consists of SPU (processing scalar 
instructions) and VPU (processing vector instructions) 

VPUs operate with vectors of up to 256 length

NEC SX-Aurora TSUBASA Architecture Overview 



NEC SX-Aurora TSUBASA & GPUs

NEC SX-Aurora TSUBASA vector engines have many similar properties/characteristics 
with modern GPUs: 

A combination of MIMD and SIMD execution model 

High-bandwidth memory utilisation, optimised for collective memory accesses 
performed by warps/vector instructions 

Installed as co-processor (with different execution model) 

Many people are familiar with GPU programming, and many graph-processing frameworks 
are already implemented for GPUs (Gunrock, NVGRAPH, cuSHA, etc.) 

Question: Does these similarities mean that graph algorithms can be implemented on SX-
Aurora TSUBASA in the same way? 
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Both Systems Are Installed As Co-processors 
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Despite both architectures are installed as co-processors, their execution models are 
different:



NEC SX-Aurora TSUBASA Vector Cores
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8 powerful vector cores 

Each core has scalar (SPU) and vector (VPU) processing units



NEC SX-Aurora TSUBASA Execution Model
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Different vector cores work according to MIMD model 

Each vector core operates with vector instructions of length 1-256 (SIMD) 

Each vector command of length 256 is processed by 32 VPP in portions, pipelining is organised between 
different computational units (FMA, ALU,….)



Memory Bandwidth & Cache Hierarchy
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Both NEC SX-Aurora TSUBASA and modern GPU architectures utilise 
High Bandwidth Memory 2 (HBM2) technology, and thus have similar 
memory hardware characteristics 

However, SX-Aurora and GPUs have different cache-hierarchy: SX-Aurora 
Vector cores direct transactions through large LLC shared cache (16 MB), 
while CUDA-cores use relatively small L1(64 KB) and L2 (4 MB) caches

Architecture Memory type Memory capacity Theoretical peak 
bandwidth (GB/s) 

Bandwidth achieved 
on STREAM 

benchmark (GB/s) 

The ratio of bandwidth 
achieved on STREAM 

to theoretical 

SX-Aurora 
TSUBASA HBM2 up to 48 GB 1200 995 82 %

NVIDIA Pascal 
P100 HBM2 up to 16 GB 732 628 85 %

NVIDIA Volta 
V100 HBM2 up to 32 GB 900 809 89 %



Which graph algorithms we are going to 
investigate?
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Graph Problems & Input Data

Currently we implemented 4 important graph-processing algorithms for different real-world problems: 

 Single Source Shortest Paths (SSSP) — Navigation, Peer to Peer Networks 

 Page Rank (PR) — ranking web-pages, finding leaders in communities  

 Connected Components (CC) — finding communities in social networks 

Single Source Widest Paths (SSWP) - optimising traffic in networks 

We have also experimented with various data sets (input graphs), including: 

 Synthetic graphs (RMAT, Uniform-random) 

 Road map graphs (USA, New-York, CA, etc) 

 Social network graphs (Twitter, LiveJournal, Pockec, Wikipedia) 

 Web-graphs (various domain subgraphs)
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Implementation Details
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In current work we investigate only shared-memory architecture 
implementations 

Shared-memory implementations of graph algorithms are generally much 
more efficient, since graph-processing problems tend to have an 
enormous amount of inter-node communications, what bottlenecks 
node performance 

Moreover, modern studies demonstrate that platforms with shared-memory 
architecture are currently able to process a lot of real-world graphs 
(different social networks, etc)



Implementation Details
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1. Optimising effective memory bandwidth during graph traversals (while 
loading both vertices and edges data) 

loading information about vertices implies indirect memory 
access pattern 

loading information about edges implies direct memory access 
pattern 

both should be executed with high efficiency! 

2. Traversing graphs using vector instructions of maximum (256) length 

3. Efficiently balancing parallel workload between 8 vector cores
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Challenges of Implementing Graph Algorithms on 
NEC SX-Aurora TSUBASA Architecture



Challenge 1: Optimising Effective Memory 
Bandwidth

Graphs algorithms are typically memory-bound 

Thus, it is important to maximise effective memory bandwidth during graph 
traversals 

In order to achieve high memory bandwidth on SX-Aurora TSUBASA: 

1. all required data should be loaded either from LLC cache or sequentially from 
memory 

2. vector cores should load data with a specific pattern 

Thus, a specific graph storage format should be used 

Ideally, this format should also be helpful with 2 other problems (utilising vector 
instructions and inter-core load balancing)
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Graph Algorithms Classification (Active-Based)

Iterative graph algorithms can be classified into 2 groups: 

1. All-active (all vertices of input graphs are traversed on each iteration) 

2. Partially-active (only specific «active» vertices of input graph are traversed 
on each iteration) 

Typically «partially-active» graph algorithms have lower computational complexity, 
but are significantly harder to implement (especially on vector systems) 

All listed problems (SSSP, PR, CC, SSWP) can be solved with all-active 
algorithms rather efficiently
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Another possible classification of graph algorithms is based on direction of traversals: 

1. pull-based (each vertex updates it’s own value) 

2. push-based (each vertex updates values of it’s neighbours) 

We use pull-based traversals, since they don’t require atomic operations support and 
typically allow to obtain higher effective bandwidth 

On SX-Aurora Gather operation is faster compared to Scatter operation 

Pull-based traversals require transposed (reversed graphs)
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Graph Algorithms Classification (Direction-Based)
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Developing Graph Storage Format…

«All-active» graph algorithms allow to perform efficient vectorised graph 
traversals and support efficient memory access pattern 

We use an approach, when each vector instruction processes 256 different 
graph vertices in parallel 

We propose VectCSR graph storage format, which is optimised for 
supporting vectorised graph traversals and efficient memory accesses
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VectCSR Graph Storage Format

Original graph is reversed to 
support «pull-based» traversals 

All graph vertices are sorted 
based on the out-degree 

Vertices are split into 2 groups 

Edges are appended with loops 
for vectorised graph-processing 
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How much extra space VectCSR format 
requires?
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Not many additional edges are added to the graph (due to vertex sorting):



Graph Traversals in VectCSR Format (First 
Group)
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Each vertex of the first group is processed collectively by all 8 vector 
cores with vector instructions of 256 length 

#pragma omp for schedule(static, 1) is used

core 1 core 2 core 3 … 



Graph Traversals in VectCSR Format (First 
Group)
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each 256 sequential vertices from the 
second group are processed by a single 
vector core 

#pragma omp for schedule(static, 1) is 
used to process different groups of 
vertices

4

5

6

7

8

9

10

11

12

13

14

15

0

2

3

0

1

4

5

4

1

7

5

6

3

8

9

8

9

12

6

7

0

2

1

7

0

4

10

11

0

9

10

11

0

13

14

15

segment №2

segment №3

co
re

 1
co

re
 2

…



Memory Access Patter in Social-Network Graphs

Social-network graphs have power-law properties, which: 

1. Allow to efficiently cache most frequently accessed graph 
vertices (+) 

2. Create a lot of cache-conflicts when accessing these vertices 
(-) 

We implement 2 optimisations, aimed to improve accesses to 
these vertices: 

1. Storing information about most frequently accessed vertices 
in private copies of arrays, located in different areas of LLC 
cache (eliminate inter-core conflicts) 

2. Storing information about most frequently accessed vertices 
with intervals of 3 elements 

These 2 optimisations allow to achieve similar performance when 
processing power-law graphs compared to random-uniform 
graphs
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2 Memory Access Pattern Optimisations

        #ifdef __USE_NEC_SX_AURORA__ 
        #pragma _NEC retain(private_src_array) 
        #endif 
         
        for(int i = 0; i < CACHED_VERTICES; i++) 
            private_src_array[i * CACHE_STEP] = _src_array[i]; // copy data about most frequently accessed vertices to private 
arrays 
         
        #ifdef __USE_NEC_SX_AURORA__ 
        #pragma _NEC ivdep 
        #pragma _NEC vovertake 
        #pragma _NEC novob 
        #pragma _NEC vector 
        #endif 
        #pragma omp for 
        for(long long int i = 0; i < edges_count; i++) 
        { 
            _T dst_value = 0; 
            int dst_id = outgoing_ids[i]; 
            if(dst_id < CACHED_VERTICES) 
            { 
                dst_value = private_src_array[dst_id * CACHE_STEP]; // store data about most frequently accessed vertices with 
intervals 
            } 
            else 
            { 
                dst_value = _src_array[dst_id]; 
            } 
            _dst_array[i] = dst_value; 
        }
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Performance Evaluation



Performance of Graph Traversal in VectCSR 
Format
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Single Source Shortest Paths (SSSP) 
Performance
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Performance scaling on synthetic RMAT graphs
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Page Rank (PR) Performance
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Performance scaling on synthetic RMAT graphs
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What about bandwidth?
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For RMAT graphs we obtain about 40-50% of theoretical peak bandwidth 

Bandwidth for Random-Uniform graphs drops significantly when indirectly accessed 
vertices data can not be placed inside LLC cache

Higher effective memory bandwidth 
(80-90%) can not be obtained in 
programs with gather/scatter 
instructions when working with 4-
byte data, since: 

gather/scatter instructions load 
256*4=1024 bytes of data 

load/store instructions are 
capable of loading 2048 bytes of 
data, which effectively doubles 
achieved bandwidth



Is it Possible to Improve Performance for Large 
Random-Uniform Graphs (and other real-world 
graphs)?

In order to improve locality of indirect memory accesses, cache-blocking 
technique can be used (similar to CPU, unlike to GPU)
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Conclusions

We presented world-first attempt to implement vectorised graph algorithms for 
NEC SX-Aurora TSUBASA architecture 

We discussed techniques, which can be used to implement «all active» «pull-
direction» graph algorithms, including VectCSR format 

4 fundamental graph processing algorithms (SSSP, CC, PR, SSWP) have been 
implemented, significantly outperforming similar GPU-based implementations 

Developed implementations allow to achieve 40-50% of theoretical peak memory 
bandwidth on several power-law graphs 

Possibility of using cache-blocking technique was investigated 

Future works includes developing more algorithms for SX-Aurora architecture, and 
investigating approaches for developing different groups of graph algorithms
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