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Stencil tasks & GPU
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(2r+2)-point cross stencil

1-D Wave Equation
Ut = C2 Uy, plus B.C. and I.C.

The cross-stencil

n+1 __ n—1 n n n n n
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(2r + 1) spatial terms
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Stepwise Algorithm

m Implemented in most applied codes s e c £ 00
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m " and 1" are stored in the global e e 0 0 0 0 o e o060 0 0 o
memory:109ce||s e o o 0o o o o e © 0 0 o o o
m 1 CUDA thread manages 1 cell — ——
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m The number of threads per block doesn't e o o o o o o o o o o o o o
matter e o 0o 0 0 0 o e o 0o 0 0 0 o
m The number of blocks is not limited ° e °° " ° e °° "
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m The kernel updates the whole domain once; e e e e e e e e e e .
it is executed in a loop o o o o o o o e © 06 0 o o o

m Automatic synchronization after each At
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Roofline Model for Stepwise Algorithm

Any algorithm performance limit

Mg < min(Mpeak, © - Lagg) = min(Mpeak, © - ga’g)
alg
Cross-stencil
FMA FMA FMA
ult™ =g, (vl ol )+ aga (U)o ol ) +agup — u)
FMA
FMA

m Operation count Oa/g =(2r+1) cgﬁ/slttp

since the rest is take from the cache; s =4 or 8

m Data Dalg =3 scell -step’
0,

Arithmetic Intensity: [, = 5 :g = 2;:1 %
alg
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Recursive Domain Decomposition

u" and u"! are stored in registers:

u
up to 106 cells m Inter-thread data exchange: shared memory
m 1 thread per localized group of cells m Inter-block data exchange: L2 cache
m 256 or 512 threads per block m Thread synchronization: syncthreads()
m CUDA-block number ~ SM number m Block syn‘chronlzat|on:
= At loop s inside the kernel Cooperative Groups / Semaphores

t
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SM Synchronization Methods

Cooperative Groups

. o Semaphore Synchronization
The official API for synchronization ] o
m Classical tool for synchronization

Barrier synchronization for all SMs at once _ _
able f " m Separate SMs may be synchronized with

Available for Compute Capability > 6.1 each other

Easy to use m Available for any Compute Capability

May be used for any problems and any

) m Manual implementation required
stencils
m The code has to be adapted for the

However, it has not provided significant problem and the stencil

performance gain over the stepwise

algorithm m Fast
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SM synchronization: Implementation

Cooperative Groups

#include <cooperative_groups.h>
using namespace cooperative_groups;

grid_group grid = this_grid();
grid.sync();

Semaphore Synchronization

volatile float *data;
volatile int *semaph;

while(semaph[blockIdx +- 1] != READABLE);
//read data written by neighboring blocks..
semaph[blockIdx +- 1] = WRITABLE;

while (semaph[blockIdx] != WRITABLE);
//write data for neighboring blocks to read
__threadfence();

semaph [blockIdx] = READABLE;
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Performance Test for Recursive Domain Decomposition

m P grows with cell number per thread (grp)

10° 10! 102
since the overhead per cell decreases ' '

10° 4 100
semaphores

m P falls abruptly for large grp due to lack of
space in registers

m Optimal grp is ~ 16 = 48

10714 F107t
m With synchronization through cooperative tepwise
groups, there is no advantage over the & |77 TR i
stepwise algorithm 102 L 10-2

m With manual Semaphore Synchronization
the performance is higher by an order of

magnitude 10° 10! 102
grp, cells per thread

P, Performance, 1012 of [cell - step/s]
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Roofline Model for Recursive Domain Decomposition

I_Ia/g < min(npeak7 @LZ . lalg7L27 @sh : Ia/g,sh)

m Operation count O, = (2r + 1) FMA

cell-step
H _ 4r . B r B
= Data sent inter-block Dalg,L2 ~ grp-threads Scell-step ~ 512 cell-step
; _ Ar B r_ B
m Data sent inter-thread Djp 55 = arp * Scellstep ~ 3 coll-siop
Oaig 512 - 2’—f1 %, inter-block via L2 cache

€ Dag 2 le %, inter-thread via shared memory
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Roofline Model for Recursive Domain Decomposition
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Recursive Domain Decomposition with Halo

m Instead of sending D data every step — send ~ H - D data every H steps

m Redundant compute in the overlapping region (halo): 2r(H — 1) cells

m The halo is implemented for both levels of the Recursive Domain Decomposition; however,
the performance gain is seen only for L2 level

m Allows to conceal the latency of the L2 exchange
<« halo r=2 Istencil
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Roofline Model for Recursive Domain Decomposition with Halo

I_Ialg < min(npeaka cees Osync//\sync)

m Inter-block synchronization time Agync = 1.3 mks

m Operation count between synchronizations Osync = KHO,g

FMA
cell-step

m Operation count per cell O, = (2r +1)
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Roofline Model for Recursive Domain Decomposition with Halo
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Conclusion

m Stencil codes can be latency-bound instead of memory-bound, if the data is localized in

registers
m Stencil codes can be compute-bound instead of latency-bound, if the data is synchronized

once per several time steps
m We have developed and implemented Recursive Domain Decomposition with Halo and
reached 90% of the peak performance (more than 1 trillion cell updates per second). The key

features are:

m data localization in registers

m pairwise semaphore synchronization

m synchronization once in several time steps (halo)
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