GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

GPU Implementation of a Stencil Code with More Than 90% of the Peak
Theoretical Performance

| Pershin, V Levchenko, A Perepelkina
Keldysh Institute of Applied Mathematics RAS, Moscow

MOSCOW, RUSSIA, SEPTEMBER 23-24, 2019

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Stencil tasks & GPU

Stencil task Nvidia GPU
m A |arge range of | ngh peak performance L i file i h
applications Mpes > 10 TFLOPS [S:;Ige register file in eac
m High parallelism m About 1000 CUDA Threads _
= Homogeneous per Block/SM [Abou.t 50 independent SMs
calculations m SIMT execution model " ICSE)nS|derab|e L2 cache
atenc
m Low intencity m High Bandwidth Memory y
OEgE EHEE BEEE
ESEE EEEE = EEEE
DEEE EE0E- - -EE00
EEEE BEEE EIEE

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

(2r+2)-point cross stencil

1-D Wave Equation
Ut = C2 Uy, plus B.C. and I.C.

The cross-stencil

n+1 __ n—1 n n n n n
utt =~ + (Evouk ‘o ju g Forug g o ug A aeug)

(2r + 1) spatial terms

o%q 2" order o o i oo A4Morder o4 i o 0o 0 order

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Stepwise Algorithm

m Implemented in most applied codes s e c £ 00
e 6 o o o o o e 6 o o o o o

m " and 1" are stored in the global e e 0 0 0 0 o e o060 0 0 o
memory:109ce||s e o o 0o o o o e © 0 0 o o o
m 1 CUDA thread manages 1 cell — ——
e 6 o o o o o e 6 o o o o o

m The number of threads per block doesn't e o o o o o o o o o o o o o
matter e o 0o 0 0 0 o e o 0o 0 0 0 o
m The number of blocks is not limited ° e °° " ° e °° "
. e 6 o o o o o e 6 o o o o o

m The kernel updates the whole domain once; e e e e e e e e e e .
it is executed in a loop o o o o o o o e © 06 0 o o o

m Automatic synchronization after each At

X

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Roofline Model for Stepwise Algorithm

Any algorithm performance limit

Mg < min(Mpeak, © - Lagg) = min(Mpeak, © - ga’g)
alg
Cross-stencil
FMA FMA FMA
ult™ =g, (vl ol)+ aga (U)o ol) +agup — u)
FMA
FMA

m Operation count Oa/g =(2r+1) cgﬁ/slttp

since the rest is take from the cache; s =4 or 8

m Data Dalg =3 scell -step’
0,

Arithmetic Intensity: [, = 5 :g = 2;:1 %
alg

Mayg, performance, GFMA/s

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

1044

1034

1024

10!

107t

Roofline Model for Stepwise Algorithm

100 10t

Tesla V100}
RTX 2070

1
L
LY

n

1
1
1
1
N

LT T |

10° 10t
laig, Operational intensity, FMA/B

104

103

L 102

10!

Maig, performance, GFMA/s

104

1034

1024

10!

107! 10° 10!
Tesla V100
i
| 1
T T
1 1 1
1 I 1
1 1 1
1 I 1
1 I 1
;)
yongng
|L‘I TR} T T
107! 10° 10!

laig, Operational intensity, FMA/B

L 104

L103

L 102

10!

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Recursive Domain Decomposition

u" and u"! are stored in registers:

u
up to 106 cells m Inter-thread data exchange: shared memory
m 1 thread per localized group of cells m Inter-block data exchange: L2 cache
m 256 or 512 threads per block m Thread synchronization: syncthreads()
m CUDA-block number ~ SM number m Block syn‘chronlzat|on:
= At loop s inside the kernel Cooperative Groups / Semaphores

t

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

SM Synchronization Methods

Cooperative Groups

. o Semaphore Synchronization
The official API for synchronization] o
m Classical tool for synchronization

Barrier synchronization for all SMs at once _ _
able f " m Separate SMs may be synchronized with

Available for Compute Capability > 6.1 each other

Easy to use m Available for any Compute Capability

May be used for any problems and any

) m Manual implementation required
stencils
m The code has to be adapted for the

However, it has not provided significant problem and the stencil

performance gain over the stepwise

algorithm m Fast

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

SM synchronization: Implementation

Cooperative Groups

#include <cooperative_groups.h>
using namespace cooperative_groups;

grid_group grid = this_grid();
grid.sync();

Semaphore Synchronization

volatile float *data;
volatile int *semaph;

while(semaph[blockIdx +- 1] != READABLE);
//read data written by neighboring blocks..
semaph[blockIdx +- 1] = WRITABLE;

while (semaph[blockIdx] != WRITABLE);
//write data for neighboring blocks to read
__threadfence();

semaph [blockIdx] = READABLE;

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Performance Test for Recursive Domain Decomposition

m P grows with cell number per thread (grp)

10° 10! 102
since the overhead per cell decreases ' '

10° 4 100
semaphores

m P falls abruptly for large grp due to lack of
space in registers

m Optimal grp is ~ 16 = 48

10714 F107t
m With synchronization through cooperative tepwise
groups, there is no advantage over the & |77 TR i
stepwise algorithm 102 L 10-2

m With manual Semaphore Synchronization
the performance is higher by an order of

magnitude 10° 10! 102
grp, cells per thread

P, Performance, 1012 of [cell - step/s]

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Roofline Model for Recursive Domain Decomposition

I_Ia/g < min(npeak7 @LZ . lalg7L27 @sh : Ia/g,sh)

m Operation count O, = (2r + 1) FMA

cell-step
H _ 4r . B r B
= Data sent inter-block Dalg,L2 ~ grp-threads Scell-step ~ 512 cell-step
; _ Ar B r_ B
m Data sent inter-thread Djp 55 = arp * Scellstep ~ 3 coll-siop
Oaig 512 - 2’—f1 %, inter-block via L2 cache

€ Dag 2 le %, inter-thread via shared memory

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Roofline Model for Recursive Domain Decomposition

1071 100 10! 102 103 107t 10° 10t 102 103
=== r=1,9rp =16, N = 40%Mpea ~ 467 [Geell*step/s] —=- r=1,9rp =16, M = 40%Mpesx ~ 467 [Gcell*step/s]
=== r=2,9rp =16, M = 46%Mpeax ~ 319 [Gcell*step/s] === r=2,9rp =16, N = 46%Mpeax ~ 319 [Gcell*step/s]
=== r=3,grp =32, N = 53%Mpeax ~ 263 [Gcell*step/s] === r=3,grp = 32, M = 53%MMpeax ~ 263 [Geell*step/s]
© 10*4 T F10* @ 104 e H10°
< <
= =
. w
o L2 cache © shared
g i3 g T
5) 5 e
£ % £ id
o 3] L 3 o 3] L 3
£ 10 e 10 £ 10 e 10
[} o [o
Q 1 1 Q o
- 1 1 - o
> o) o
5 o) o
c o c "o
o o
o o
1 1 o
1 1 o
o o
102 L : : : e 102 102 Lt L . : : 102
107! 10° 10! 102 103 107! 10° 10t 102 103

laig, Operational intensity, FMA/B laig, Operational intensity, FMA/B

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Recursive Domain Decomposition with Halo

m Instead of sending D data every step — send ~ H - D data every H steps

m Redundant compute in the overlapping region (halo): 2r(H — 1) cells

m The halo is implemented for both levels of the Recursive Domain Decomposition; however,
the performance gain is seen only for L2 level

m Allows to conceal the latency of the L2 exchange
<« halo r=2 Istencil

{ ©0000000i00000000i00o0 0o
A" 0000000000000000:900
} ©ooooofoccuo oo o 8 oo
™M oooooooqquOOOooooo
Il ©0000000000000000000
1... 00000000/00000000:i000

le wl
SMl ™~ 2r(H-1)=8 1 SM2

0O 0 O0O|O0OO
0O 0 O0O|O0OO
0O 0 O0O|0

0 0 O0O|O
00 O0O|O0OO

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Roofline Model for Recursive Domain Decomposition with Halo

I_Ialg < min(npeaka cees Osync//\sync)

m Inter-block synchronization time Agync = 1.3 mks

m Operation count between synchronizations Osync = KHO,g

FMA
cell-step

m Operation count per cell O, = (2r +1)

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Roofline Model for Recursive Domain Decomposition with Halo

10° 10° 107 108 10°
104 ¢+ : : : 104
* r=1
mr=1 grp =48, H =16, § —
M =90% Mpear ~ 1.05 - 1012 <eltsten, & I RE
mr=2grp=48, H =3, §103. - L 103
: £
M =86% Mpeak ~ 0.60 - 10125, 5
mr=3grp=48 H =38, 3 |
M = 88% Mpeak ~ 0.44 - 1012 <D,] ..
10% 58 106 107 108 164"

Osync, Operations per sync , FMA

GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

Conclusion

m Stencil codes can be latency-bound instead of memory-bound, if the data is localized in

registers
m Stencil codes can be compute-bound instead of latency-bound, if the data is synchronized

once per several time steps
m We have developed and implemented Recursive Domain Decomposition with Halo and
reached 90% of the peak performance (more than 1 trillion cell updates per second). The key

features are:

m data localization in registers

m pairwise semaphore synchronization

m synchronization once in several time steps (halo)
This work is supported by grant

Contact:
#18-71-10004 of the Russian Science Foundation.

pershin2010@gmail.com

