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Stencil tasks & GPU

Stencil task
A large range of
applications
High parallelism
Homogeneous
calculations
Low intencity

Nvidia GPU

High peak performance
Πpeak > 10 TFLOPS
About 1000 CUDA Threads
per Block/SM
SIMT execution model
High Bandwidth Memory

Large register file in each
SM
About 50 independent SMs
Considerable L2 cache
latency



GPU Implementation of a Stencil Code with More Than 90% of the Peak Theoretical Performance

(2r+2)-point cross stencil

1-D Wave Equation
utt = c2uxx , plus B.C. and I.C.

The cross-stencil
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Stepwise Algorithm

Implemented in most applied codes
un and un−1 are stored in the global
memory: 109 cells
1 CUDA thread manages 1 cell
The number of threads per block doesn’t
matter
The number of blocks is not limited
The kernel updates the whole domain once;
it is executed in a loop
Automatic synchronization after each ∆t
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Roofline Model for Stepwise Algorithm

Any algorithm performance limit

Πalg ≤ min(Πpeak ,Θ · Ialg ) ≡ min(Πpeak ,Θ ·
Oalg

Dalg
)

Cross-stencil
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Operation count Oalg = (2r + 1) FMA
cell·step

Data Dalg = 3 · s B
cell·step , since the rest is take from the cache; s = 4 or 8

Arithmetic Intensity: Ialg =
Oalg

Dalg
= 2r+1
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Roofline Model for Stepwise Algorithm
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Recursive Domain Decomposition

un and un−1 are stored in registers:
up to 106 cells
1 thread per localized group of cells
256 or 512 threads per block
CUDA-block number ∼ SM number
∆t loop is inside the kernel

Inter-thread data exchange: shared memory
Inter-block data exchange: L2 cache
Thread synchronization: syncthreads()
Block synchronization:
Cooperative Groups / Semaphores

t

x
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SM Synchronization Methods

Cooperative Groups
The official API for synchronization
Barrier synchronization for all SMs at once
Available for Compute Capability ≥ 6.1
Easy to use
May be used for any problems and any
stencils
However, it has not provided significant
performance gain over the stepwise
algorithm

Semaphore Synchronization
Classical tool for synchronization
Separate SMs may be synchronized with
each other
Available for any Compute Capability
Manual implementation required
The code has to be adapted for the
problem and the stencil
Fast
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SM synchronization: Implementation

Cooperative Groups

#include <cooperative_groups.h>
using namespace cooperative_groups;

grid_group grid = this_grid();
grid.sync();

Semaphore Synchronization

volatile float *data;
volatile int *semaph;

while(semaph[blockIdx +- 1] != READABLE);
//read data written by neighboring blocks..
semaph[blockIdx +- 1] = WRITABLE;

while(semaph[blockIdx] != WRITABLE);
//write data for neighboring blocks to read
__threadfence();
semaph[blockIdx] = READABLE;
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Performance Test for Recursive Domain Decomposition

P grows with cell number per thread (grp)
since the overhead per cell decreases
P falls abruptly for large grp due to lack of
space in registers
Optimal grp is ∼ 16÷ 48
With synchronization through cooperative
groups, there is no advantage over the
stepwise algorithm
With manual Semaphore Synchronization
the performance is higher by an order of
magnitude 100
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Roofline Model for Recursive Domain Decomposition

Πalg ≤ min(Πpeak ,ΘL2 · Ialg ,L2,Θsh · Ialg ,sh)

Operation count Oalg = (2r + 1) FMA
cell·step

Data sent inter-block Dalg ,L2 = 4r
grp·threads · s

B
cell·step ∼

r
512

B
cell·step

Data sent inter-thread Dalg ,sh = 4r
grp · s

B
cell·step ∼

r
2

B
cell·step

Ialg =
Oalg

Dalg
∼

{
512 · 2r+1

r
FMA

B , inter-block via L2 cache
2 · 2r+1

r
FMA

B , inter-thread via shared memory
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Roofline Model for Recursive Domain Decomposition
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Recursive Domain Decomposition with Halo

Instead of sending D data every step → send ∼ H · D data every H steps
Redundant compute in the overlapping region (halo): 2r(H − 1) cells
The halo is implemented for both levels of the Recursive Domain Decomposition; however,
the performance gain is seen only for L2 level
Allows to conceal the latency of the L2 exchange
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Roofline Model for Recursive Domain Decomposition with Halo

Πalg ≤ min(Πpeak , . . . ,Osync/Λsync)

Inter-block synchronization time Λsync = 1.3 mks
Operation count between synchronizations Osync = KHOalg

Operation count per cell Oalg = (2r + 1) FMA
cell·step
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Roofline Model for Recursive Domain Decomposition with Halo

r = 1: grp = 48, H = 16,
Π = 90% Πpeak ∼ 1.05 · 1012 cell·step

s ;
r = 2: grp = 48, H = 8,
Π = 86% Πpeak ∼ 0.60 · 1012 cell·step

s ;
r = 3: grp = 48, H = 8,
Π = 88% Πpeak ∼ 0.44 · 1012 cell·step

s .
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Conclusion

Stencil codes can be latency-bound instead of memory-bound, if the data is localized in
registers
Stencil codes can be compute-bound instead of latency-bound, if the data is synchronized
once per several time steps
We have developed and implemented Recursive Domain Decomposition with Halo and
reached 90% of the peak performance (more than 1 trillion cell updates per second). The key
features are:

data localization in registers
pairwise semaphore synchronization
synchronization once in several time steps (halo)

Contact: This work is supported by grant
pershin2010@gmail.com #18-71-10004 of the Russian Science Foundation.


