

Yutaka Ishikawa Leader, Flagship2020 Project RIKEN Center for Computational Science (R-CCS)

Russian Supercomputing Days 2019, 2019/09/24, 11:10-11:35

About RIKEN

- National institute for basic research in Japan covering physical to biological sciences
- Foundation in 1917
- 14 centers in 10 sites across Japan

About RIKEN and R-CCS

- National institute for basic research in Japan covering physical to biological
 - sciences
- Foundation in 1917
- 14 centers in 10 sites across Japan
- ☐ July 2010: RIKEN AICS (Advanced Institute of Computational Science) was established
- ☐ Sep. 2010: Installation of K computer began
- □ Jun 2012: #1 on TOP500
- Nov 2012: #1 (10PF+) on TOP500
- ☐ Apr. 2018: AICS is renamed to R-CCS (Riken
 - Center for Computational Science)
- ☐ Aug. 2019: K computer was shutdown

RIKEN Center for Computational Science

Background: Flagship2020

■ Missions

- Building the Japanese national flagship supercomputer, post K, and
- Developing wide range of HPC applications, running on post K, in order to solve social and science issues in Japan

■ Project organization

- Post K Computer development
 - R-CCS is in charge of development
 - Fujitsu is vendor partner.
 - International collaborations: DOE, CEA, JLESC (NCSA, ANL, UTK, JSC, BSC, INRIA, RIKEN)
- Applications
 - The government selected
 - 9 social & scientific priority issues
 - 4 exploratory issues

and their R&D organizations.

CY	20	014			20	015			20	016			20	017			20)18			20	019			20	020			20)21			20)22		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Basic Design				Design and Implementation							Manufacturing installation, and Tuning					-				pera	ation	>													

Background: Flagship2020

Target Applications

■ Missions Building the Japane GENESIS and

Developing wide ra Genomon in order to solve sc³ GAMERA

Fujitsu is vendor RSDFT International coll 8 Adventure BSC, INRIA, RIKEN)

Applications

- The government selected
 - 9 social & scientific priority issues

9 CCS-QCD

4 exploratory issues and their R&D organizations.

NOW	
-----	--

Υ	20)14			2	015			20	016			20	017			20)18			20)19			20	020			20)21			20	022		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
	Bas			Bas	Basic Design					Design and Implementation								>	ins	stalla	Ma ation		<mark>actu</mark> d Tu	ring Ining	']			pera	ation	>						

Computational Mechanics System for Large Scale

Lattice QCD simulation (structured grid Monte Carlo)

Analysis and Design (unstructured grid)

Fugaku

- □ A Fugaku prototype machine was built in Summer 2018. Since then, Fujitsu has been testing and evaluating the machine.
- □ Ten racks of Fugaku achieve almost the same performance of K computer (864 racks)

X 10 =

		Fugaku	K
	CPU Architecture	A64FX (Armv8.2-A SVE +Fujitsu Extension)	SPARC64 VIIIfx
	Cores	48	8
7	Peak DP performance	2.7+ TF	0.128 TF
Node	Main Memory	32 GiB	16 GiB
· ·	Peak Memory Bandwidth	1024 GB/s	64 GB/s
	Peak Network Performance	40.8 GB/s	20 GB/s
Rack	Nodes	384	102
Rack	Peak DP performance	1+ PF	< 0.013PF
	Process Technology	7 nm FinFET	45 nm

CPU A64FX

1.76+ GHz rrtesy of FUJITSU LIMITED

Architecture	Armv8.2-A SVE (512 bit SIMD)							
Covo	48 cores for compute and 2/4 for OS activities							
Core	DP: 2.7+ TF, SP: 5.4+ TF, HP: 10.8+ TF							
Cache L1	64 KiB, 4 way, 230+ GB/s(load), 115+ GB/s (store)							
Cache L2	CMG(NUMA): 8 MiB, 16way Node: 3.6+ TB/s Core: 115+ GB/s (load), 57+ GB/s (store)							
Memory	HBM2 32 GiB, 1024 GB/s							
Interconnect TofuD (28 Gbps x 2 lane x 10 port)								
I/O	PCIe Gen3 x 16 lane							
Technology	7nm FinFET							
Cache L1 Cache L2 Memory Interconnect I/O	48 cores for compute and 2/4 for OS activities DP: 2.7+ TF, SP: 5.4+ TF, HP: 10.8+ TF 64 KiB, 4 way, 230+ GB/s(load), 115+ GB/s (store) CMG(NUMA): 8 MiB, 16way Node: 3.6+ TB/s Core: 115+ GB/s (load), 57+ GB/s (store) HBM2 32 GiB, 1024 GB/s TofuD (28 Gbps x 2 lane x 10 port) PCIe Gen3 x 16 lane							

Performance

Stream triad: 830+ GB/s

Dgemm: 2.5+ TF (90+% efficiency)

ref. Toshio Yoshida, "Fujitsu High Performance CPU for the Post-K Computer," IEEE Hot Chips: A Symposium on High Performance Chips, San Jose, August 21, 2018.

TofuD Interconnect

- 6 RDMA Engines
- Hardware barrier support
- Network operation offloading capability

8B Put latency	0.49 – 0.54 usec
1MiB Put throughput	6.35 GB/s

rf. Yuichiro Ajima, et al., "The Tofu Interconnect D," IEEE Cluster 2018, 2018.

An Overview of Fugaku Hardware

150k+ node

2.7 TF x 150k+ = 405 + PF

- Two types of nodes
 - Compute Node and Compute & I/O Node connected by Fujitsu TofuD, 6D mesh/torus Interconnect
- 3-level hierarchical storage system
 - 1st Layer
 - One of 16 compute nodes, called Compute & Storage I/O Node, has SSD about 1.6 TB
 - Services
 - Cache for global file system
 - Temporary file systems
 - Local file system for compute node
 - Shared file system for a job
 - 2nd Layer
 - Fujitsu FEFS: Lustre-based global file system
 - 3rd Layer
 - Cloud storage services

Recent Result by Fujitsu

ref. Toshiyuki Shimizu, "POST-K SUPERCOMPUTER DEVELOPMENT," SCAsia 2019.

➤ Himeno benchmak is a solver for the Poisson's equation solution using the Jacobi iteration method

SX-Aurora (Type 10B) 1.4 GHz, 2.15 TF, 1228.8 GB/s Tesla V100 1.245 GHz, 7 TF, 900 GB/s Fugaku (Post-K) 1.76+ GHz, 2.7+ TF, 1024 GB/s

Estimated Performance Achievement

■ Performance Targets

- √ 100 times faster than K for some applications (tuning included)
- ✓ 30 to 40 MW power consumption

■ Peak Performance

	PostK	К
Peak DP (double precision)	400+ Pflops (34x +)	11.3 Pflops*
Peak SP (single precision)	800+ Pflops (70x +)	11.3 Pflops
Peak HP (half precision)	1600+ Pflops (141x +)	
Total memory bandwidth	150+ PB/sec (29x +)	5,184TB/sec

^{*} Reported in TOP500 (including I/O nodes)

☐ Geometric Mean of Performance Speedup of the 9 Target Applications over the K-Computer

37x +

Predicted Performance of 9 Target Applications	
--	--

As of 2019/05/14

	Area	Priority Issue	Performance Speedup over K	Application	Brief description			
	Health and longevity	Innovative computing infrastructure for drug discovery	125x +	GENESIS	MD for proteins			
1	longevity	Personalized and preventive medicine using big data	8x +	Genomon	Genome processing (Genome alignment)			
	Dis prever Envin	Integrated simulation systems induced by earthquake and tsunami	45x +	GAMERA	Earthquake simulator (FEM in unstructured & structured grid)			
	Disaster prevention and Environment	Meteorological and global environmental prediction using big data	120x +	NICAM+ LETKF	Weather prediction system using Big data (structured grid stencil & ensemble Kalman filter)			
	Energy	5. New technologies for energy creation, conversion / storage, and use	40x +	NTChem	Molecular electronic simulation (structure calculation)			
	Energy issue	6. Accelerated development of innovative clean energy systems	35x +	Adventure	Computational Mechanics System for Large Scale Analysis and Design (unstructured grid)			
	Industrial competitiveness enhancement	7. Creation of new functional devices and high-performance materials	30x +	RSDFT	Ab-initio simulation (density functional theory)			
	trial veness ement	8. Development of innovative design and production processes	25x +	FFB	Large Eddy Simulation (unstructured grid)			
	Basic science	Elucidation of the fundamental laws and evolution of the universe	25x +	LQCD	Lattice QCD simulation (structured grid Monte Carlo)			

An Overview of System Software Stack

Fortran, C/C++, OpenMP, Java, ...

Math libraries

Tuning and Debugging Tools

Virtualization & Container KVM, Singularity

Batch Job and Management System

Hierarchical File System

Open Source Management Tool
Spack

Red Hat Enterprise Linux 8

Concluding Remarks

- The K supercomputer is being removed. After reconstruction of electrical and water-cooling system, installation of Fugaku will begin in the end of 2019
- Early access program will start in 2020
- General operation will start around 2021

